Pearson
 Edexcel

Mark Scheme (Results)

Summer 2019

Pearson International Advanced Subsidiary Level
In Chemistry (WCH12) Paper 01 Energetics,
Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WCH12_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (Multiple Choice)

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is B (pressure)	(1)
	A is not correct because concentration of the acid does affect the rate of reaction	
	C is not correct because surface area of the solid does affect the rate of reaction	
	$\boldsymbol{D} \quad$ is not correct because temperature does affect the rate of reaction	

Question number	Answer	Mark	
$\mathbf{2}$	The only correct answer is D (64)		
	A is not correct because it assumes the relationship between temperature and rate is linear		
B is not correct because it suggests a rate increase of 6×2			
C is not correct because it suggests a rate increase of 6^{2} instead of 2^{6}			

Question number	Answer	Mark
3	The only correct answer is A B is not correct because it shows the concentration of both reactants and products decreasing C is not correct because both concentration of reactants and products are still changing D is not correct because concentrations of P and Q remain unchanged	(1)

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{D} \quad\left(2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})\right)$	(1)
	\boldsymbol{A} is not correct because the equilibrium will move to the left hand side (more molecules)	
\boldsymbol{B} is not correct because the equilibrium will not change as both sides have the same number of molecules		
C is not correct because the equilibrium will move to the left hand side (more molecules)		

Question number	Answer	Mark
$\mathbf{5}$	The only correct answer is C (hydrogen chloride is formed in the reaction)	(1)
	\boldsymbol{A} is not correct because chlorine does not increase oxidation state when HCl (misty fumes) forms	
\boldsymbol{B} is not correct because sulfur does not increase oxidation state when HCl (misty fumes) forms		
\boldsymbol{D} is not correct because chlorine will not be evident as misty fumes and does not form in the reaction		

Question number	Answer	Mark
6	The only correct answer is C (+6) \boldsymbol{A} is not correct because the oxidation number of S in a compound is not always -2 B is not correct because this is the value for the $\mathrm{SO}_{3}{ }^{2-}$ ion Dis not correct because the sum of all the oxidation states should be equal to the charge on the ion, not 0	(1)

Question number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathbf{B} \quad\left(6 \mathrm{NaOH}+3 \mathrm{Br}_{2} \rightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{H}_{2} \mathrm{O}\right)$	(1)
	\boldsymbol{A} is not correct because it is a neutralisation reaction	
C is not correct because only Al is oxidised and only H is reduced		
\boldsymbol{D} is not correct because no oxidation numbers change		

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is B (BaSO 4$)$	(1)
	A is not correct because solubility of sulfates decreases down Group 2 and Ca is above Ba C is not correct because Group 1 sulfates are soluble D is not correct because Group 1 sulfates are soluble	

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is B $\left(-75 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)
	A is not correct because the 2 equations have been added together	
\boldsymbol{C} is not correct because the second equation has been subtracted from the first equation		
\boldsymbol{D} is not correct because both equations have been reversed and added together		

Question number	Answer	Mark
10	The only correct answer is B (-122) \boldsymbol{A} is not correct because it is the sum of formation of all product and reactant bonds \boldsymbol{C} is not correct because the energy to break the bonds is less than the energy released when the new bonds form Dis not correct because it is the sum of breaking all product and reactant bonds	(1)

Question number	Answer	Mark
11	The only correct answer is C $\quad\left(1 / 2 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}(\mathrm{g})\right)$ \boldsymbol{A} is not correct because 2 moles of Br atoms form and Br_{2} is in gaseous state B is not correct because 2 moles of Br atoms form D is not correct because Br_{2} is in gaseous state	(1)

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is A (an increase of $6.0^{\circ} \mathrm{C}$)	(1)
	B is not correct because neutralisation reactions are exothermic, so temperature will rise not fall D is not correct because neutralisation reactions are exothermic, so temperature will rise not fall and because the total volume of solution is $100 \mathrm{~cm}^{3}$, not $50 \mathrm{~cm}^{3}$	

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is $\mathbf{A} \quad\left(\mathrm{NH}_{4}^{+}\right)$	(1)
	\mathbf{B} is not correct because the carbon has a lone pair of electrons	
\boldsymbol{C} is not correct because the oxygen has a lone pair of electrons		
\boldsymbol{D} is not correct because the nitrogen has a lone pair of electrons		

Question number	Answer	Mark
14	The only correct answer is A B is not correct because it is an isomer with 1 branch, so lower London forces C is not correct because it is an isomer with 2 branches, so lower London forces Dis not correct because it is an isomer with 3 branches, so lower London forces	(1)

Question number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is C (strontium bromide)	(1)
	\boldsymbol{A} is not correct because the chloride will give a white precipitate	
	\boldsymbol{B} is not correct because the chloride will give a white precipitate	
	D is not correct because the barium will give a green flame	

Question number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is $\boldsymbol{D} \quad$ (red light is emitted as electrons return to lower energy levels)	(1)
	\boldsymbol{A} is not correct because the electrons absorb heat as they are promoted	
\boldsymbol{B} is not correct because the electrons emit light when they return to ground state		
C is not correct because light energy is emitted when the electrons return to the ground state		

| Question
 number | Answer | Mark |
| :--- | :--- | :---: | :---: |
| $\mathbf{1 6 (a)}$ | The only correct answer is C (H-H bond enthalpy is greater than Si-H bond enthalpy) | (1) |
| | A is not correct because hydrogen bonding does explain why ice has a lower density than water | |
| | B is not correct because hydrogen bonding does explain why HF has a higher boiling temperature then HCl | |
| | D is not correct because hydrogen bonding does explain why alcohols are less volatile than similar alkanes | |

Question number	Answer	Mark
16(b)	The only correct answer is A B is not correct because the 2 water molecules do not form a hydrogen bond between two hydrogen atoms C is not correct because the hydrogen bond angle is not 104.5° Dis not correct because the angle between 2 water molecules should be 180° and water molecules should not have a bond angle of 180°	(1)
Question number	Answer	Mark
17	The only correct answer is B $\quad(d \div a)$ A is not correct because it is not a gradient of a tangent and is inverse of the rate C is not correct because it is the average rate D is not correct because it is the initial rate	(1)

Question number	Answer	Mark
$\mathbf{1 8}$	The only correct answer is D $\quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$	(1)
	A is not correct because it will not have a major peak at $\mathrm{m} / \mathrm{z}=57$	
B is not correct because it will not have a major peak at $\mathrm{m} / \mathrm{z}=57$		
C is not correct because it will not have a major peak at $\mathrm{m} / \mathrm{z}=57$		

Total for Section A=20 marks

Section B

Question Number	Answer	Additional guidance	Mark	
19(a)(i)	$\bullet 2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{(-)}$	(1)	Allow $2 \mathrm{I}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{I}_{2}$	(2)
	$\bullet 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	(1)		
			Ignore state symbols, even if incorrect	
		Allow multiples		
		Allow equations in either order		

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 9 (a) (\text { (ii) }}$	$2 \mathrm{I}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	Ignore state symbols, even if incorrect	(1)
	OR	Allow multiples	
	$2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	No TE from (a)(i)	
		Do not award uncancelled electrons	

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 9 (b) (i)}$	An answer that makes reference to the following points:	(1)	Do not award just 'brown' / colourless / orange (pale) yellow aqueous layer allow light brown / pale brown / yellow- brown / straw Allow purple / violet
	Pink cyclohexane layer	(1)	Do not award red / grey

Question Number	Answer	Additional guidance	Mark
19(b)(ii)	An explanation that makes reference to the following points: Cyclohexane and iodine form London forces (between molecules) (1) Hydrogen bonds between water molecules are stronger than London forces (between iodine and water molecules so less soluble in aqueous layer)	Allow 'van der Waals' / dispersion forces / instantaneous dipole - induced dipole forces Allow 'Hydrogen bonds in water are strong' Allow one mark for answers that compare type of attraction without any reference to magnitude or answers based solely on polarity e.g. Just 'iodine forms London forces with cyclohexane but cannot form hydrogen bonds with water' scores 1 mark 'iodine and cyclohexane are non-polar, but water is polar' scores 1 e.g. 'Intermolecular forces formed by iodine and water are weaker than intermolecular forces in water' scores 1	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{1 9 (c)}$	(Anhydrous) sodium sulfate $/ \mathrm{Na}_{2} \mathrm{SO}_{4} /$ magnesium sulfate $/ \mathrm{MgSO} /$ calcium chloride $/ \mathrm{CaCl}_{2} /$ calcium sulfate $/ \mathrm{CaSO}_{4} /$ calcium oxide $/$ CaO	Allow silica gel	(1)
Do not award concentrated sulfuric acid			
phosphoric acid			
Do not award $\mathrm{CuSO}_{4} / \mathrm{CaCO}_{3}$			

(Total for Question 19 = 8 marks)

Question Number	Answer	Additional guidance	Mark
20(a)(i)	(magnesium nitrate decomposes / breaks down (when heated with a Bunsen burner)	Ignore references to evaporation Do not award 'reacts with oxygen' Do not award just the idea that magnesium nitrate reacts	
lgnore products of decomposition even if incorrect			

Question Number	Answer	Additional guidance	Mark
20(a)(ii)	- calculate mass of water removed - calculates moles of water removed - calculates moles of anhydrous magnesium nitrate - deduces x OR - calculates moles of anhydrous magnesium nitrate - Calculates Mr of hydrated salt - Writes expression to find x in terms of mass and M - deduces \mathbf{x}	Example of calculation $5.12-2.97=2.15 \mathrm{~g}$ $2.15 / 18=0.11944$ (mol) M1 could be subsumed in M2 $2.97 / 148.3=0.0200(\mathrm{~mol})$ $0.11944: 0.0200=6: 1$ so $x=6$ (must be integer) $\text { 2.97/148.3 = } 0.0200(\mathrm{~mol})$ $5.12 / 0.0200=256$ $148.3+18 x=256$ $x=6 \text { (must be integer) }$ Allow TE at each step Correct answer with no working scores M4 only Ignore SF apart from M4, which must be 1SF	(4)

Question Number	Answer	Additional guidance	Mark
20(b)(i)	An explanation that makes reference to the following points: - large(r) amount of energy required to break ionic bonds (in lattice / MgCO_{3} / solid) - small(er) amount of energy released during hydration (of ions) / when ions form bonds to water OR Lattice energy is more exothermic than the hydration enthalpies	Do not award molecules / atoms / London forces Ignore references to H bonds If no other mark is awarded allow 1 for 'lattice energy is greater than hydration enthalpy'	(2)

Question Number	Answer		Additional guidance	Mark
20(b)(ii)	- application of Hess's Law - calculation of $\Delta_{f} H^{\circ}$	(1) (1)	Example of calculation: $+(-394-602)+1096$ (+) $100\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Correct answer with no working scores 2 marks - $100\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 mark (+) $702\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 mark - $2092\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 mark (+) $2092\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 mark Ignore units even if incorrect	(2)

Question Number	Answer	Additional guidance	Mark
20(b)(iii)	An explanation that makes reference to the following points - Group 2 carbonates increase in (thermal) stability as you go down the group - size of the (metal) ion increases / charge density (of ion) decreases - so metal ion is less polarising or (electron cloud of) anion less distorted - so weakens (covalent) bonds in carbonate ion less / more energy needed to break (covalent) bonds in carbonate (1)	Accept reverse argument Each marking point is independent Ignore 'atomic radius" Allow $\mathrm{C}-\mathrm{O}$ or $\mathrm{C}=\mathrm{O}$ as alternative for 'bonds in carbonate'	(4)

(Total for Question 20 = 13 marks)

Question Number	Answer	Additional guidance	Mark
21(a)(i)	• water / $\mathrm{H}_{2} \mathrm{O} /$ aqueous	Do not award just ethanol /alcohol But allow 'water and ethanol'	(1)

Question Number	Answer	Additional guidance	Mark
21(a)(ii)	• correct mechanism name and type	Nucleophilic substitution	(1)
		Allow nucleophile for nucleophilic	
		Ignore $S_{N} 2$ or $S_{N} 1$	

Question Number	Answer	Additional guidance	Mark
21(a)(iii)	A mechanism that shows: - dipole on $\mathrm{C}-\mathrm{Cl}$ bond and arrow from bond to Cl or just beyond - arrow from lone pair on OH^{-}ion to carbon - both products	Ignore $\mathrm{S}_{\mathrm{N}} 2$ transition state Do not award M2 if covalent bond in KOH Allow KCl as a product if KOH or K^{+}is shown on LHS Allow skeletal formulae / $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{Cl}$ Penalise use of half arrows once only in M1 and M2	(3)

(Total for Question 21 = 9 marks)

Question Number	Answer	Additional guidance	Mark
22 (a)	An answer that makes reference to the following points: - add PCl_{5} / phosphorus(V) chloride /phosphorus pentachloride (1) - misty fumes evolved (that turn damp blue litmus red / form white smoke with ammonia) OR - Add sodium / Na - Effervescence / bubbles seen / fizzing OR - Add Lucas' Reagent - Solution turns cloudy immediately / quickly	M2 dependent on correct reagent seen in M1. Allow PCl_{3} Allow steamy fumes / white fumes Do not award white smoke unless in conjunction with exposure of fumes to ammonia Ignore gas given off / hydrogen given off Do not award heat with acidified dichromate(VI) ions	(2)

Question Number	Answer	Additional guidance	Mark
22 (b)(i)	 (1) (1) (1) (1)	Allow any unambiguous type of structure	(4)

Question Number	Answer	Additional guidance	Mark
22 (b)(ii)	A description that makes reference to any two from the four following points: - Peak at $3750-3200\left(\mathrm{~cm}^{-1}\right)$ due to $\mathrm{O}-\mathrm{H}$ bond present in reactant / absent in product - Peak at 1000-1300 $\left(\mathrm{cm}^{-1}\right)$ due to C-O bond present in reactant / absent in product - Peak at $1669-1645\left(\mathrm{~cm}^{-1}\right)$ due to $\mathrm{C}=\mathrm{C}$ bond present in product / absent in reactant - Peak at $3095-3010\left(\mathrm{~cm}^{-1}\right)$ due to $\mathbf{C - H}$ bond present in alkene in product / absent in reactant	Allow two peaks quoted or two bonds for one mark Allow any wavenumber or range of wavenumbers within the allowable range.	(2)

Question Number	Answer	Additional guidance	Mark
22 (c)	- Longest chain has eight carbon atoms, with terminal OH group - rest of structure correct	 Accept structural , skeletal or displayed formulae Ignore connectivity except O-H-C Allow 1 mark for correct displayed formulae with missing hydrocarbon hydrogens Allow 1 mark for correct structure of 2,6-dimethylhept-5-en-1-ol	(2)

Section C

Question Number	Answer	Additional guidance	Mark
$\mathbf{2 3 (a)}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$	Ignore state symbols even if incorrect	(1)
		Allow multiples 2 correct equations via aldehyde	
		Allow molecular formulae	

| Indicative content |
| :--- | :--- | :--- | :--- |
| 1. The higher the concentration (of acid or $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2 /}$) the |
| higher the rate |
| 2. Because the collision frequency increases |
| 3. The higher the temperature the faster the rate |
| 4. Because more particles have an energy greater than the |
| activation energy / more successful collisions |\quad| I2 can be scored independent of I1 |
| :--- | :--- |

Question Number	Answer	Additional guidance	Mark
23(c)	-colour of the potassium dichromate(VI) / chromium(III) will mask the colour of the indicator or the reaction mixture will contain hydrogen ions / acid (present from the oxidising agent)	lgnore references to 'not a sharp colour change'	(1)

Question Number	Answer	Additional guidance	Mark
23(d)(i)	An answer that makes reference to the following points	Colours in the reverse order scores one	(2)
	(1) colourless		
	to		

Question Number	Answer	Additional guidance	Mark
23(d)(ii)	An answer that makes reference to two of the following points: - First titre likely to be a rangefinder / rough titration / estimate (so done quickly) - There was an air bubble (in the burette jet which fills before the titration starts) - Burette rinsed with water (rather than sodium hydroxide)	Allow 'not added dropwise' (near end point) / 'overshot at end point' Allow 'some water still in the burette after rinsing' Ignore pre-titration errors parallax errors water in conical flask Do not award lack of swirling of conical flask water in pipette	(2)

Question Number	Answer	Additional guidance	Mark
23(d)(iii)	- calculation of average titre - calculation of moles of $\mathrm{NaOH}(\mathrm{aq})$ in average titre and deduction of moles of propanoic acid in $25.0 \mathrm{~cm}^{3}$ (1) - calculation of moles of propanoic acid in $250 \mathrm{~cm}^{3}$ - Evidence of correct M_{r} - calculation of mass of propanoic acid in the sample	Example of calculation $\begin{align*} & (22.20+22.10) / 2=22.15 \mathrm{~cm}^{3} \tag{1}\\ & (22.15 / 1000) \times 0.00668=1.47962 \times 10^{-4} \\ & (\mathrm{~mol}) \\ & 1.1 \text { reaction so }=1.47962 \times 10^{-4}(\mathrm{~mol}) \\ & 1.47962 \times 10^{-4} \times 10=1.47962 \times 10^{-3}(\mathrm{~mol}) \\ & 74\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & 1.47962 \times 10^{-3} \times 74=0.10949(\mathrm{~g}) \\ & =0.109(\mathrm{~g}) / 0.11(\mathrm{~g}) \end{align*}$ Correct answer with no working scores 5	(5)

Question Number	Answer	Additional guidance	Mark
23(d)(iv)	calculation of mass of propanoic acid in mg (1)	Example of calculation	(2)
		$0.109 \times 10^{3}=109(\mathrm{mg})$	
		Comment	
		This mark may be evident in d(iii)	
	calculation of mass of propanoic acid in $\mathrm{mg} \mathrm{kg}^{-1}$ and comparison to limit	$109 \times 20=2180\left(\mathrm{mg} \mathrm{~kg}^{-1}\right)$ so within permitted range M1 is subsumed by M2	
		Allow TE from (d)(iii)	
		Ignore SF except 1 SF	

Question Number	Answer	Additional guidance	Mark
23(d)(v)	An answer that makes reference to one of the following points: - (below the limit) the food would become mouldy (too quickly) / would not stop the food decomposing / would not be an effective preservative	Ignore harmful	(1)
	(or above the limit) the food tastes bad / becomes (too) acidic / becomes inedible / becomes corrosive / becomes toxic		

(Total for Question 23 = 20 marks) Total for Section C = 20 marks TOTAL FOR PAPER = $\mathbf{8 0}$ MARKS

